< Previous | Contents | Next >
♤ Whole genome sequencing (also known as full genome sequencing, complete genome sequencing, or entire genome sequencing), is a laboratory process that determines the complete DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Almost any biological sample—even a very small amount of DNA or ancient DNA—can provide the genetic material necessary for full genome sequencing. Such samples may include saliva, epithelial cells, bone marrow, hair (as long as the hair contains a hair follicle), seeds, plant leaves, or anything else that has DNA-containing cells.
♤ Full genome sequencing will allow health care professionals to analyze the entire human genome of an individual and therefore detect all disease-related genetic variants, regardless of the genetic variant's prevalence or frequency. This will enable the rapidly emerging medical fields of Predictive Medicine, Preventive Medicine and Personalized Medicine and will mark a significant leap forward for the clinical genetic revolution. Full genome sequencing is clearly of great importance for research into the basis of genetic disease and has shown significant benefit to a subset of individuals with rare disease in the clinical setting.